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Redesign of the Stewart Flight Simulator Platform with Real-Time 

Sensing and Actuation 
 

Abstract 

 

This paper presents an integrated design process and tests of a Stewart simulator with a 

virtual visualization tool, which uses Virtools to create and generate three-dimensional 

motions. An inverse kinematic algorithm is written to convert each visualized motion to 

the displacements of six cylinders in a Stewart motion simulator. Information of the 

displacements is then transferred through the User Datagram Protocol (UDP) to a 

personal computer which has the LabVIEW software. An NI USB-6251 data acquisition 

device is applied to interact with the LabVIEW program and the Stewart hydraulic 

simulator. The approach presented in this paper to function an old Stewart hydraulic 

simulator can also be applied to other simulators.  

 

 

1. Introduction 

 

The major objective of this project is to develop a prototype system which can simulate 

the motion of a water craft when it is driven through different waves and obstacles. This 

physical simulator will also facilitate a virtual and interactive environment to support for 

the future design and studies of water craft dynamics, sea keeping and human-craft 

interaction. Figure 1 shows the flow chart of the project. The main components include a 

wave model, a simulated water craft with an interactive control tool, a joystick, a Stewart 

platform, and a data acquisition device. The three-dimensional virtual visualization 

environment is created by using the software of Virtools
1
 and a joystick is applied to 

maneuver the simulated water craft. Information of the craft motion is then transferred to 

a Stewart Stewart Platform
2
 manipulator through an inverse kinematics, a LabVIEW

3
 

program, and a data acquisition device, which is an NI USB 6251
4
. Communication 

between the Virtools PC and the LabVIEW PC is achieved by using the software of User 

Datagram Protocol (UDP)
 5

. Development of this project was demonstrated in one of the 

labs for the class of MET 415, Introduction to Robotics, at the Department of 

Engineering Technology at Old Dominion University. This project includes software 

programming, inverse kinematics, feedback-signal sensing, solenoid activation, 

electrical-circuit connections, and data communications. Descriptions of the main 

components are described in the following sessions. 

 

2. Virtools  

 

Virtools is a 3D application/simulation development environment that bundles together 

models and code into files that can be played by the Virtools Web Player. The simulation 

can be built inside the Virtools development environment, pulling together code, data, 

and models into a playable simulation. It's a robust and complete 3D engine (web-

playable or standalone) with built-in physics, Artificial Intelligence (AI), and server 

communications
1
. 
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Figure 1: Flow Chart of the Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of Virtools application. 
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Currently the Wave implementation in Virtools interacting with the boat object is 

achieved using existing Virtools Building Blocks (BB)
 6

 applied to a deformable mesh 

which represents the water surface. First a Bezier Progresion BB
6
 (Figure3) is applied to 

the mesh. This block interpolates a float according to a 2D Bezier curve in the [Min,Max] 

range, in a given number of milliseconds. This float value is then used to displace the 

vertices of the mesh after the values are processed by another Virtools BB called the 

noise BB
6
.  

 

The interpolation of the float value in the Progression BB is calculated over a 10 second 

interval which loops continuously during the simulation. The lower end of the Bezier 

curve is 0 and the higher end is 500 units. The progression of the float values in the curve 

occurs between 0% and 100% which defines the progression of the process. Start=0%, 

middle time=50%, end=100%. The float from the Progression BB is then sent to the 

Noise BB (Figure4) and generates a random starting point from the number sent. Then an 

axis vector is set to define the strength of the noise effect along each three axes (x,y,z) 

and displaces the vertices of the mesh with a random vector. These 2 BB combined 

generate the wave motion in the Virtools environment. The mesh is then declared as a 

movable floor object so that it can interact with the boat. 

 

The interaction between the Wave and the boat (Figure 5) is currently produced by using 

the Object Keep
1
 on Floor BB.  This BB forces an object to stay on the declared floor. It 

uses the object's bounding box to test the object's position relative to the floor. The 

position of the boat object then is sent to the UDP_Sender 
7
 BB to calculate the leg 

lengths of the motion base simulator. 

 

           

 

 

 

 

 

 

 

 

 

 

         Figure 3: Bezier and Noise BB          Figure 4:  Keep on Floor BB         
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Figure 5: The Wave Pattern and the Object. 

 

 

3. Inverse Kinematics Algorithm 

 

This section derives the inversed kinematics equations for position analysis of the wave-

riding simulator which is basically a Stewart platform. Let the centers of the base and the 

movable platforms of the Stewart platform be fixed at Points O and C, respectively. Also 

let subscripts, i and j, be denoted as the joints at the base and the movable platforms, 

respectively. The scheme of the system is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The coordinate axes at the center of the 6-DOF Simulator.  

 

 The center of the base, C, is considered as the center of the wave rider whose 

position and orientation will be issued by Virtool in our system at evenly spaced time 

instances. Our task here is to find the length of the cylinder, ijr , joining i and j for a given 

motion trajectory, in terms of the global coordinate system, x-y-z. Specifically, the goal 

here is to find the new position of the platform at ti, for the given changes in the 

translational and angular displacements of the water craft, defined from 1−it  to it by s∆  

and θ∆ as,  
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In other words, assuming that the length of the cylinder 1−i

ijl  is known at 1−it , the task is to 

find the new length at it , i

ijl , in terms of s∆ and θ∆ . These changes in the positions, s∆ , 

and in orientation, θ∆ , are output by Virtool at ti expressed in terms of the global 

coordinate system. Particularly, it should be noted that θ∆  is not the changes in Euler 

angles as presented in the literature
8,9,10

. In the following derivation, the superscript prime 

indicates that the associated quantity is defined in terms of the body-fixed coordinate 

system.  

 The equation used to compute the length of each cylinder is given by 

                                            ij

T

ij

i

ijl rr=                                                     (2) 

The superscript, i, indicates the time instant. Unless it is necessary for clarity, the 

superscript will be dropped from the rest of derivation. 

 The position vector from joint i to j, rij, at time equal to ti can be given by 

0ocoi

0ocoiij

rRR

rRRr

′++−=

++−=

i
A

         (3) 

where A
i
 is the transformation matrix evaluated at it , the vector, oiR , denotes the position 

vector from Point O to Point i , and similarly, ocR , denotes the vector from Point O to 

Point C at the previous time instant, it . The last term in Equation(2), 0r ′ , is the position 

vector measured from Point C to Point j, whose value is fixed in terms of the local 

coordinate system. 

 

At t=0, the body-fixed coordinate system of the movable platform is coincided with 

that of the base platform. Therefore, the transformation matrix A
0
 is equal to the identity 

matrix. In this case, the corresponding Euler parameters
11

 are 10 =e and 0321 === eee . 

Thus, ( )T00010 =p . At time it , the change of the angular displacement of the 

movable platform, θ∆ , is known. One can then find the updated p
i
 at ti as  

 

ppp i ∆+= 0       (4) 

 

where the changes in the Euler parameters are approximated by
9 

 

( ) θp ∆≈∆
T

G
0

2

1
     (5) 

 

where G
0
 is given as 






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
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



=

1000

0100

0010
0

G       (6) 

 

With the new p
i
, one can then construct the new E and G matrices

11
 at ti and obtain the 

transformation matrix A
i-1,i

 which accounts for the change of the coordinate system from 

ti-1 to ti as A
i-1,i

=EG
T
 , where E and G are given as 
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The accumulated transformation matrix at ti, is then given by 

 
iiii AAA ,11 −−=        (9) 

 

The value of ocR is obtained by the following recursive relation, 

 

sRR
1-i

ococ ∆+=        (10) 

 

where s∆  is known. Substituting Equation(10) into Equation(3), one obtains  

0

1-i

ocoi

0ocoi

0ocoiij

rsRR

rRR

rRRr

′+∆++−=

′++−=

++−=

i

i

A

A      (11) 

 

In summary, Equation (1) can be rewritten as 

 

0

1-i

ocoiij rsRRr ′+∆++−= i
A           (12) 

 

The change of the length of each of cylinder can be approximated from the velocity of the 

hydraulic cylinder in the time interval between ti-1 and ti. This process results in the 

following relation, 

θ∆−∆=∆ 0ij rsr ~               (13) 

where the skew matrix, 
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0r . The change, ijr∆ , produces the 

change in the length of the leg as 
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T
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I

l
l   (14) 

 

Note that 1-i

ijr  and 1−i

ijl  in Equation(14) should be those evaluated at 1−it . This can be 

observed from the following derivation: 
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The collection of the lengths of six cylinders gives a matrix equation, 

 

q∆=∆ Blij                            (16) 

 

where B is a 1×6 matrix whose row is equal to 

61

~

×

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θ
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q . 

 

 

4. User Datagram Protocol (UDP) 

 

In Virtools, behaviors describe how elements act in an environment. Virtools provides a 

large collection of reusable behaviors in the form of behavior BBs. Users can create 

complex scenes using behavior building blocks through a simple graphical user interface. 

Users can also create their own building blocks using the Virtools software development 

kit (SDK) by developing dynamically linked libraries (DLLs) that implement the 

behaviors. In this project, the software that drives the motion base simulator and the 

Virtools visualization program can reside in different computers or the same computer, 

increasing configuration flexibility to facilitate fast computations. The communication 

between the Virtools program and the motion based simulator utilizes network-based 

User Datagram Protocol (UDP). A Virtools behavior building block UDP_Sender was 

developed to implement the UDP network communications. The building block (BB) 

UDP_Sender
7
 is shown in 6. 

 

 
Figure 7: UDP_Sender Building Block 

 

UDP does not use a three-way handshake to establish connection as does Transmission 

Control Protocol (TCP)
5
. It also does not check every packet it receives. Thus UDP 

provides fast communications and is selected in this project. The data included in the 

UDP socket includes water craft position (x, y, z) and orientation (roll, pitch, yaw). These 

six parameters are then converted to the leg lengths of the motion base simulator using 

inverse kinematics applied to the Stewart Platform. 
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5. Stewart Manipulator 

 

5.1 Introduction of the Simulator 

 

A Stewart Platform manipulator is applied to simulate the motion created by the Virtools.  

The Stewart Platform manipulator has the characteristic of great rigidity, high-force-

weight ratio, and with the mobility of six degree of freedom.  The 6-DOF Stewart 

Platform shown in Figure 8 was controlled by an old and unavailable DOS programs. .  

Figure 9 shows the main components of the simulator. The six 5/3 servo directional 

control valves, which are activated by solenoids, are used to control the motion of the 

hydraulic fluid. Figure 10 shows the schematic motion control of each cylinder. 

Depending on which side of the solenoid is activated, the fluid will move the cylinder 

either in the upward or downward direction. To activate the solenoid, a 5V DC with 50 

mini-amps is needed. When both solenoids are not activated, the fluid supply will be cut 

off and the cylinder will remain at its current position. Also a potentiometer is attached to 

each cylinder to provide a feedback signal of the current position for each cylinder. 

Therefore, to program this platform, a data acquisition device with six analog inputs (for 

potentiometers) and twelve + 5V digital outputs (for the control of the six servo valves) is 

needed. In addition, a 5V power supply for the six potentiometers is also required. To 

receive the feedbacks from the potentiometers and to activate the servo valves 

simultaneously, the Flat Sequence Structure
8
 in the LabVIEW 8.2 is selected. Based on 

the hardware needs of this control, an NI USB-6251
4
 is selected. The device (Figure 11) 

can supply thirty-two digital I/Os, sixteen analog inputs, and two analog outputs. The 

procedures to program the simulator using LabVIEW are listed in the following 

paragraphs. 

 

 

 

 

 

 

 

 

 

Figure 8: The 6-DOF Hydraulic Stewart Platform. 
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Figure 9: Main components in this Stewart simulator.  

 

 

Figure 10: Schematic motion control for each cylinder. 
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Figure 11: NI USB 6251
4
. 

 

5.2 Testing Procedures for Potentiometers 

Each potentiometer was taken out of the simulator for this testing purpose. The steps are 

listed as following: 

 

(1) Power the potentiometer with a five Volt in D.C. 

(2) Move the connector (Figure 10) on the potentiometer to a certain 

displacement and measure the output voltage. Result shows that the 

displacement is proportional to the output voltage. 

(3) Interface the feedback from the potentiometer to one of the analog input ports 

at the NI USB 6251 and check the readout, which is compared to the output 

voltage in Step 2. These two readings must be the same. To read the signal, 

the “Measurement & Automation Explorer” of the NI USB 3251 must be 

activated. Figure 12 shows the analog input ports available in this device and 

Figure 13 shows the pin connections. The feedback from the potentiometer 

can be connected to any one of the ports listed on the screen. 

(4) Repeat the same test from Steps 1 to 3 for the other five potentiometers. 

(5) Wire the connection between the potentiometers and the NI USB 3251. Figure 

14 shows the design drawing. 
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Figure 12: Measurement & Automation Explorer. 

 

 

 
Figure 13: USB 6251 Pin-connection diagram. 
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Figure 14: Electrical wiring for the potentiometers. 

 

 

5.3 Testing Procedures for Servo-Control Valves 

 

The following procedures are used to test the servo-control valves: 

 

1. Power the hydraulic-fluid pump. 

2. Power one of the solenoids on a servo-control vale and see if the cylinder is 

moving. If it is, then power off the solenoid and power on the other solenoid and 

see if the cylinder is moving in the opposite direction.  

3. Cut the power off on both solenoids and see if the cylinder remains at the same 

position. 

4. Design the pin connection between the servo-control valves and the controller 

device. Figure 15 shows the drawing. 

 

 

 

Figure 15: Pin-connection diagram for the servo-control valves. 
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5.4 LabVIEW Programming for Potentiometers 

Figure 16 shows the LabVIEW program for sensing the feedback signals from the six 

potentiometers. The blue lines represent the feedback signals of the voltages detected 

from each potentiometer. The following equation is used to display the current position of 

each cylinder
12

: 

 

Cylen
ACTV

FBD
Curpos *=        (17) 

 

Where Curpos, FBD, ACTV, and Cylen represent current position, feedback signals, 

activating voltage, and cylinder length respectively. In this case, ACTV = 5 V and Cylen 

= 12  inches.  

 

 

 

 

 
Figure 16: The LabVIEW program for six potentiometers. 
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5.5 LabVIEW Programming to Activate Solenoids 

 

Figure 17 shows a program to command the motion of a cylinder. Since the flow rate of 

the hydraulic fluid is a constant, the output from the program is the unit of ms. The 

following equation is applied to calculate the traveling time for each cylinder: 

 

6.1*
5

)5*12/( eterVpotentiomComDisp
TravTime

−
=    (18) 

 

Where TravTime, ComDisp, Vpotentiometer represent traveling time, voltage read from a 

potentiometer, and commanded displacement for the cylinder. In this case, each cylinder 

needs approximate 1.6 seconds to travel twelve inches. If the value of the numerator in 

Equation 18 is positive, then only the left solenoid in Figure 10 will be activated. If the 

value is negative, then only the right solenoid will be activated. Equation 18 was 

implemented in the LabVIEW program shown in Figure 17.  
 
 
 
 

 

 

Figure 17: The LabVIEW program to activate a cylinder. 

 

 

5.6 The Combined LabVIEW Program 

 

Figure 18 shows the flow chart of the combined LabVIEW. The UDP port in the 

LabVIEW will be opened to read six character strings every time. The “String to 

Number” function which is also available in the LabVIEW converts the string to six real 

numbers representing six cylinder displacements. The combined program was developed 

by using the subprograms developed in Session 5.4 and 5.5. Because of the size of the 

program, only partial program to control Cylinder 1 is shown. To activate the cylinders 

simultaneously, the flat sequence structure of the LabVIEW was applied.  

Feedbacks from 
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Outputs to 

Servo Valves 
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Figure 18: Flow chart of the combined program. 

 

 

 

 

Figure 19: Partial LabVIEW Program to Control Cylinder 1.  
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6. Summary 

From this design project, engineering students can achieve the following  

objectives: 

  

(1) Generate three-dimensional motions using VirTools. 

(2) Understand the kinematics of a Steward manipulator. 

(3) Data Transfer between computers. 

(4) Create a control software program using current programming tools. 

(5) Use data acquisition device to interact with sensing devices and actuators. 

(6) Check and wire electrical circuits. 

 

The approach presented in this paper to function a Stewart hydraulic motion base  

simulator can also be applied to other simulators which have analog/digital position 

sensors and servo control valves. The only concern in this motion control is that the 

hydraulic fluid rate is always constant and therefore the speed is fixed. A flow control 

valve is to be added in the future so that the speed can be adjusted. 
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